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Abstract

We propose a consistent lattice Boltzmann equation (LBE) with baroclinic coupling between species and mixture
dynamics to model the active scalar dynamics in multi-species mixtures. The proposed LBE model is directly derived from
the linearized Boltzmann equations for mixtures and it has the following two distinctive features. First, it uses the multiple-
relaxation-time collision model so that it has the flexibility of independent Reynolds and Schmidt numbers, and better
numerical stability. Second, it satisfies the indifferentiability principle therefore leads to a set of consistent hydrodynamic
equations for barycentric velocity for mixtures. The proposed LBE model is validated through simulations of decaying
homogeneous isotropic turbulence in three dimensions. We simulate both the active and passive scalar dynamics in decay-
ing turbulence for mixtures. We also compute various statistical quantities and their decay exponents in decaying turbu-
lence. Our results agree well with existing results for both scalar dynamics and decaying turbulence.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulence is a mechanism for effective mixing, and turbulent mixing is relevant to various engineering
applications. Turbulent flows generate large interfacial surface areas among interacting species with small
eddies produced by turbulent energy cascade, which permits the otherwise slow molecular mixing to proceed
faster [1]. Turbulent mixing involves three processes: entrainment, dispersion (or stirring), and diffusion, span-
ning a continuous spectrum of space-time scales of the flow [2]. Clearly, turbulent mixing remains a challeng-
ing problem in both theoretical and experimental studies.

With growing computational power available nowadays, direct numerical simulation (DNS) has become an
indispensable means to study turbulent mixing [3–5]. However, it should be noted that so far most DNS
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studies of turbulent mixing are limited to that of passive scalars (e.g. [4,6]), in which scalar dynamics is driven
by, but does not affect hydrodynamics. Theory, modeling, and simulation of realistic mixing flows, which are
characterized by active-scalar dynamics of the mixed species and/or chemically reacting components, are not
yet well developed and remain as an open and active research area [1]. In active-scalar dynamics, the scalar
dynamics affects the mixture hydrodynamics and vice versa, as opposed to passive-scalar dynamics which is
driven by, but does not any influence to, hydrodynamics. The example of the former is a binary mixture of
two species of different molecular weights, and that of the latter is a mixture of two species of different color
but otherwise identical properties.

The demand for effective modeling and simulation strategies is particular pressing for combustion, which
includes a broad class of problems, e.g. reacting scalar mixing layers [7], mixing of a conserved scalar in a tur-
bulent reacting flows [8], modeling of both premixed [9] and non-premixed [10] flames, detonations in mixtures
[11] and mixing effected by compressibility in high Reynolds number flows. For these problems, the theories
and models based on the passive-scalar approach may not be adequate for the reasons which are discussed
later (cf. Section 3.3). In turbulent mixing, one must deal with the effects due to variable Schmidt number
Sc and species of different molecular properties in mixtures, among other things. In continuum theory for mix-
tures [12,13], one is inevitably confronted with the closure problem of expressing the barycentric mixture
dynamics in terms of the individual species dynamics (e.g. [14,15]). An example of the closure problem can
be illustrated by combining two single-species momentum equations to obtain a single-fluid momentum equa-
tion for the multi-species mixture in terms of the barycentric velocity. The resulting mixture momentum equa-
tion involves quantities of individual species, which must be approximated by the mixture properties in order
to close the equation. This closure problem is difficult to model within the framework of continuum theory
because it involves inter-species interactions, which can only be properly treated by means of statistical
mechanics in principle [14,15].

In this work we will develop a lattice Boltzmann equation (LBE) for mixtures with active-scalar mixing
dynamics. There already exists a number of lattice Boltzmann models for mixture (e.g. [16,17]). However,
most existing LBE models for mixtures have no direct connection to kinetic theory and are based on heuristics
[18,19]. Only very recently some LBE models for mixtures have been directly derived from kinetic equations
[20–23] and this work is a continuation of our effort in this direction. The LBE model for mixtures proposed in
this work has several new features. First, it is directly derived from the linearized Boltzmann equations for
mixtures. Second, it uses the multiple-relaxation-time collision model [24–28] as opposed to the popular
Bhatnagar–Gross–Krook (BGK) model [29] with single-relaxation-time, which has been used in most existing
LBE models for multi-component fluids (e.g. [16,17]). Finally and most importantly, the proposed model has a
consistent baroclinic coupling between the species dynamics and the mixture dynamics and satisfies the indif-
ferentiability principle, both of which have not been adequately addressed in the previous LBE models. The
proposed LBE model is for mixtures of ideal gases in near incompressible conditions and will be tested for
simulations of scalar dynamics in decaying homogeneous isotropic turbulence (DHIT) in three dimensions.

Decaying homogeneous isotropic turbulence (DHIT) is a canonical test in turbulence theory and is a most
studied flow with DNS (cf. [6] and references therein). We note that while DNS studies on DHIT of incom-
pressible flows of single species are extensive (cf. [6]), including recent results obtained by using the LBE
method [30,31], there are relatively few on DNS of compressible turbulence [32–35], and even less on DNS
study of DHIT in mixtures beyond passive scalar mixing (e.g. [4,6]). We hope our present work on DNS of
DHIT in mixtures can induce further research interest in this area.

The remainder of this paper is organized as follows. In Section 2 we review the kinetic theory and various
model kinetic equations for mixtures. In particular, we discuss the importance of the indifferentiability prin-
ciple in deriving consistent hydrodynamic equations. In Section 3 we discuss in detail the proposed lattice
Boltzmann equation for mixture in three dimensions, including the hydrodynamic equations, the transport
coefficients, and scalar dynamics derived from the proposed LBE model. In Section 4 we discuss the numerics
of the LBE simulations of mixtures. One particular important aspect for active-scalar dynamics in mixtures is
initialization of flow fields, which is significantly different from that in passive-scalar dynamics. Because spe-
cies density and velocity fields must be consistent with each other, we propose an initialization procedure for
this purpose. For completeness, we also provide a brief description of decaying homogeneous isotropic turbu-
lence. In Section 5 we show our preliminary results in two parts: the scalar dynamics in mixing and DNS of
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DHIT. Specifically, we measure the kinetic energy KðtÞ and the dissipation rate eðtÞ and the decay exponent n.
When comparing our results with existing data, we find our results agree with previous results. Finally, we
conclude the paper in Section 6.

2. Kinetic and hydrodynamic theory for mixtures

We will discuss succinctly the kinetic theory for mixtures. For the sake of simplicity without loss of gener-
ality, we shall restrict this discussion to the Boltzmann equations for binary mixtures in what follows. The
simultaneous Boltzmann equations for a binary mixture without external force can be written as:
@tf r þ n � $f r ¼ Qrr þ Qr1; ð1Þ

where Qr1 ¼ Q1r; 1 6¼ r, is the cross-collision term for two different species r and 1. Obviously, for an N-com-
ponent system, there will be N such equations, each containing N collision terms. In general, the collision term is
Qr1 ¼
Z

dn1 dHdeBðH; knr1kÞ½f 0rf 01 � f rf 1�; ð2Þ
where f 0r ðf 01Þ and f r ðf 1Þ denote the post-collision and pre-collision state of the particle of species r ð1Þ,
respectively, nr1 :¼ ðnr � n1Þ, and we refer the details of the collision integral of Eq. (2) to standard texts
on the Boltzmann equation [36–40]. Obviously, the system of N equations for N species is much more formi-
dable to analyze than the Boltzmann equation for a single-species system. In modeling of an N-species system,
the first objective is to find a suitable approximation for the integral collision term of Eq. (2) that would sig-
nificantly simplify the computation while maintaining the most essential part of the physics. For this purpose,
the linearized or relaxation collision models are applied [39–41].

The justification for the relaxation approximation for the collision terms relies on our understanding of the
underlying physics pertinent to mixtures. Consider two binary mixtures, for example, each consisting of a light
and a heavy gas. The total mass of each species is equal for one mixture, implying a smaller number density for
the heavier gas, and the number densities of the two species is equal for the other, implying a larger mass den-
sity (or mass fraction) for the heavier species. In equal-mass mixture, the Maxwellization of light species is
mostly due to self-collision whereas the equilibration of the heavier species is predominantly due to cross-col-
lisions. This is due to the fact that the number of heavy molecules available for collisions is smaller. In the
equal-number mixture, Maxwellization of both species involves self and cross-collisions. This example illus-
trates the equilibrating process in a mixture depends strongly on the properties of the mixture. When the
Maxwellization process is complete, the stress of the corresponding species becomes isotropic, or equivalently
the heat conduction relaxes to zero. Therefore, the scale on which the stress becomes isotropic or the heat con-
duction relaxes is a suitable measure of Maxwellization. The equilibration among different species can also
take place in several different manners. Velocity and temperature differences may equilibrate on the same tem-
poral scale, as in the equal-mass mixture, or on vastly different scales, as in the equal-number mixture. In addi-
tion, these equilibrating processes need not occur sequentially but also concurrently with the Maxwellization.

There is a significant amount of literature on gas mixtures within the framework of kinetic theory [37,41–
52]. In the Chapman–Enskog analysis for a simple gas, one assumes a clear separation of scales in space and
time, that is, to distinguish the spatial and temporal scales which are much larger than the mean free path or
mean free time, respectively. An analogy for a mixture becomes much more difficult because of the multiplicity
of spatial and temporal scales due to inter-species interactions. In the work of Chapman and Cowling [37], the
full Boltzmann equations for a binary mixture are analyzed under the assumptions that all scales are of the
same order approximately, or equivalently, that the phenomenon of interest is smooth with respect to all col-
lisional scales. The determination of various transport coefficients was the main objective of Chapman and
Cowling [37] and no attempt was made to describe the evolution dynamics for mixtures.

Direct analysis or numerical simulation of the Boltzmann equation is not feasible in general. This is due to
the difficulty involved in evaluating the complex integral collision operators. Two approaches can be followed
to circumvent this difficulty. The first, Grad’s moment method, is to obtain the non-normal solutions of the
Boltzmann equation (i.e. the solutions beyond the hydrodynamic variables) [53]. The Boltzmann equation is
equivalent to a system of infinite number of moment equations. In the Grad’s moment method, the moment



P. Asinari, L.-S. Luo / Journal of Computational Physics 227 (2008) 3878–3895 3881
system is truncated to a finite number of moments and closure modeling is required to express the unclosed
moments in terms of the closed ones. The second method is to derive simplified model Boltzmann equations
which are more manageable to solve. Numerous model equations are influenced by Maxwell’s approach to
solve the Boltzmann equation by using the properties of the Maxwell molecule [54] and the linearized Boltz-
mann equation. The simplest model equations for a binary mixture is that by Gross and Krook [43], which is
an extension of the single-relaxation-time model for a pure system – the celebrated Bhatnagar–Gross–Krook
(BGK) model [29].

With the BGK approximation [29,43], the collision integrals Qr1½r; 1 2 fA; Bg� can be approximated by fol-
lowing linearized collision terms
Jrr ¼ � 1

kr
½f r � f rð0Þ�; Jr1 ¼ � 1

kr1
½f r � f r1ð0Þ�; ð3Þ
where f rð0Þ and f r1ð0Þ are Maxwellians
f rð0Þðqr; ur; T rÞ ¼
qr

ð2pRrT rÞD=2
e�ðn�urÞ2=ð2RrT rÞ; ð4aÞ

f r1ð0Þðqr; ur1; T r1Þ ¼
qr

ð2pRrT r1ÞD=2
e�ðn�ur1Þ2=ð2RrT r1Þ; ð4bÞ
where D is the spatial dimension, Rr ¼ kB=mr and mr are the gas constant and the molecular mass of the r
species, respectively, and kB is the Boltzmann constant. There are three adjustable relaxation parameters in
the collision terms: kr; k1, and kr1 ¼ ðq1=qrÞk1r. The species Maxwellian f rð0Þ is characterized by the conserved
variables of each individual species: the mass density qr, the mass velocity ur, and the temperature T r; while
the mixture Maxwellians f r1ð0Þ and f 1rð0Þ are characterized by four adjustable parameters: ur1; u1r; T r1, and
T 1r. There are several considerations in determining these arbitrary parameters: simplicity of the resulting the-
ory, accuracy of approximation, and ease of computation. The cross-collisional terms would be symmetric
only if one takes ur1 ¼ u1r ¼ u and T r1 ¼ T 1r ¼ T , where u and T are the velocity and temperature of the mix-
ture, respectively, which are yet to be defined. This is essential in preserving irreversible thermodynamics, espe-
cially the Onsager relation [55]. Another thermodynamic relation that needs to be satisfied is the
indifferentiability principle [56], that is, if two species are identical, the system of the mixture Eq. (1) collapses
to the equation of a pure species. Obviously, this is true for the Boltzmann equation, but it does not hold for
the BGK-type model equations for mixtures. As we shall see later, the constraints imposed by the indifferen-
tiability principle would also affect the self collision terms.

Since a mixture ultimately relaxes to the equilibrium defined by the mixture variables u ant T, it is logical to
use f r1ð0Þ as the equilibrium in the Chapman–Enskog analysis. Fewer terms in the expansion of f r about f r1ð0Þ

would be needed in many cases if one chooses ur1 ¼ ur and T r1 ¼ T r, i.e. f r1ð0Þ ¼ f rð0Þ. The main difference in
using the mixture variables u and T, as opposed to the species variables ur and T r is that the former leads to
the single-fluid theory, from which one set of hydrodynamic equations for the mixture variables is derived,
while the latter leads to the two-fluid theory [45,51], from which two sets of coupled hydrodynamic equations
of mixture variables can be derived.

For r species, the BGK-type collision term combining self- and cross-collisions can be rewritten as:
Jr ¼ �
1

kr
þ 1

kr1

� �
½f r � f rð0Þ� � 1

kr1
½f rð0Þ � f r1ð0Þ�: ð5Þ
Mathematically, f rð0Þ can be expanded in terms of f r1ð0Þ, or equivalently, the fluid properties of individual spe-
cies, qr; ur, and T r in terms of the mixture fluid properties, q, u, and T, or vice versa. As pointed out by Gross
and Krook [43], and similarly by Hamel [47,49], one can also linearly combine these two expansions with an
adjustable parameter 0 6 b 6 1, that is, a portion of f rð0Þ; bf rð0Þ, is expressed in terms of f r1ð0Þ, and a portion
of f r1ð0Þ; ð1� bÞf r1ð0Þ, is expressed in terms f rð0Þ:
f rð0Þ � f r1ð0Þ ¼ nrð2pRrT Þ�3=2ðe�c2
r=2RrT � e�c2=2RrT Þ

¼ ð1� bÞf rð0Þð1� e�ð2crþwrÞ�wr=2RrT Þ � bf r1ð0Þð1� eð2c�wrÞ�wr=2RrT Þ; ð6Þ
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where c :¼ ðn� uÞ; cr :¼ ðn� urÞ;wr :¼ ður � uÞ, and we have assumed the mixture is isothermal, i.e.
T r ¼ T r1 ¼ T .

If the cross-collision term is linearized in terms of the diffusion velocity wr :¼ ður � uÞ, one obtains the gen-
eralized model of Sirovich [45]:
Jr ¼ �
1

kr
½f r � f rð0Þ� � 1

kr1
sr � wr; ð7Þ
where
sr :¼ 1

RrT
ð1� bÞf rð0Þðn� urÞ þ bf r1ð0Þðn� uÞ
� �

: ð8Þ
The original model of Sirovich [45] is recovered when b ¼ 0. This model allows two relaxation times, conse-
quently an independent variable Schmidt number Sc.

So far we have yet to define the mixture velocity u and temperature T. The choice of u and T is unique and is
a key issue in the BGK-type of modeling. By insisting that the relaxation equations for the velocity difference
ður � u1Þ and the temperature difference ðT r � T 1Þ obtained from the full Boltzmann equations and the model
equations must be the same, the following definitions for the mixture velocity and temperature must be used
[46]:
u ¼ ur1 ¼ u1r ¼
mrur þ m1u1

mr þ m1
; ð9aÞ

T r1 ¼ T r þ
2mrm1

ðmr þ m1Þ2
ðT 1 � T rÞ þ

m1

6kB

ðu1 � urÞ2
� �

: ð9bÞ
However, the above definition of u for the BGK model equations contradicts the indifferentiability principle
[56]. That is, for two identical species r and 1, the model equations do not reduce to the one for a single species
gas. For the BGK model equations of mixtures, the indifferentiability principle can be maintained if the bary-
centric velocity is used in the mixture Maxwellian:
u ¼
qrur þ q1u1

qr þ q1

: ð10Þ
But the barycentric velocity is inconsistent with the conditions (9a) derived from the full Boltzmann equations.
Hence, a dilemma arises since a choice has to be made between satisfying either the full Boltzmann equation or
the indifferentiability principle. As we will argue next, the indifferentiability principle is more important for the
hydrodynamic modeling of mixtures considered here.

3. A lattice Boltzmann model for mixture and its hydrodynamics

3.1. The lattice Boltzmann equations

In the previous section, the distinction between self and cross-collisions is highlighted, as it should be when
discussing different physical regimes. Some practical examples allow the reader to understand the role of these
collisions in approaching equilibrium by different mixtures. Modeling these interactions by means of two split
collisional operators seems the most natural choice. However two doubts immediately arise: first of all, in case
of many species, the cross-collision term describes many different interactions at the same time; secondly, and
more seriously, in case of linear BGK-type models, the model splitting in two operators can be easily over-
come by regrouping them in one global collisional operator, with a new redefined equilibrium [23]. Hence
the distinction between the split collisional operators and the global one is simply a matter of defining a con-
sistent local equilibrium. Clearly for this second goal, the indifferentiability principle should be taken into
account. This has already be recognized in the recent kinetic theory of mixtures [56].

The lattice Boltzmann equations for a binary mixture can be written as the following:
frðxj þ cdt; t þ dtÞ � frðxj; tÞ ¼ �M�1 � Ŝ �M � ½fr � frðeqÞðuÞ�; ð11Þ
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where u is the barycentric velocity of the mixture, the fold-face symbols such as f denote Q-tuple vectors, and
Q is the number of discrete velocities:
fr :¼ ðf r
0 ; f r

1 ; . . . ; f r
N Þ

T
;

frðeqÞ :¼ ðf rðeqÞ
0 ; f rðeqÞ

1 ; . . . ; f rðeqÞ
N ÞT;

frðxj þ cdtÞ :¼ ðf r
0 ðxjÞ; f r

1 ðxj þ c1dtÞ; . . . ; f r
N ðxj þ cNdtÞÞT;
where T denotes the transpose operator. In Eq. (11), the equilibrium distribution functions are given by:
f rðeqÞ
i ¼ wiqr ari þ

ðci � uÞ
RrT

þ 1

2

ðci � uÞ2

ðRrT Þ2
� u � u

RrT

" #( )
: ð12Þ
It should be noted that collision term in the LBE model of Eq. (11) has indeed combined both self and mutual
collision terms, because the equilibrium f rðeqÞ

i is a function of the barycentric velocity u. Therefore, interactions
between the species have been considered in the collision term.

We will use 19 velocity model in three dimensions (D3Q19 model), of which the discrete velocities are:
c0 ¼ ð0; 0; 0Þ, ci ¼ ð�1; 0; 0Þc, ð0; �1; 0Þc, and ð0; 0; �1Þc, for i ¼ 1–6, and ci ¼ ð�1; �1; 0Þc, ð�1; 0; �1Þc,
and ð0; �1; �1Þc, for i ¼ 7–18, where c :¼ dx=dt. For this model, the coefficients w0 ¼ 1=3, wi ¼ 1=18 for
kcik ¼ 1, i ¼ 1–6, and wi ¼ 1=36 for kcik ¼

ffiffiffi
2
p

, i ¼ 7–18; the parameter RrT ¼ 1=3 in the model; and
ar0 ¼ ð3� 2urÞ and ari ¼ ur for i 6¼ 0, and 0 < ur 6 1 is an adjustable parameter to determine the equation
of state for r-species:
pr ¼
1

3
urqr: ð13Þ
With a specific order of the moments as the following:
m :¼ ðq; jx; jy ; jz; pxy ; pxz; pyz; 3pxx; pww; e; qx;mx; qy ;my ; qz;mz; e1; e2; e3ÞT;
the transform matrix M is given by:
M¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0

0 0 0 1 �1 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1

0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1 1 1 �1 �1

0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1

0 2 2 �1 �1 �1 �1 1 1 1 1 1 1 1 1 �2 �2 �2 �2

0 0 0 1 1 �1 �1 1 1 1 1 �1 �1 �1 �1 0 0 0 0

�30 �11 �11 �11 �11 �11 �11 8 8 8 8 8 8 8 8 8 8 8 8

0 �1 1 0 0 0 0 2 �2 2 �2 �1 1 �1 1 0 0 0 0

0 �1 1 0 0 0 0 0 0 0 0 1 �1 1 �1 0 0 0 0

0 0 0 �1 1 0 0 2 2 �2 �2 0 0 0 0 �1 1 �1 1

0 0 0 �1 1 0 0 0 0 0 0 0 0 0 0 1 �1 1 �1

0 0 0 0 0 �1 1 0 0 0 0 2 2 �2 �2 �1 �1 1 1

0 0 0 0 0 �1 1 0 0 0 0 0 0 0 0 1 1 �1 �1

1 �5 �5 �5 �5 4 4 7 7 7 7 �2 �2 �2 �2 �2 �2 �2 �2

1 �5 �5 2 2 �3 �3 0 0 0 0 5 5 5 5 �2 �2 �2 �2

1 0 0 �3 �3 �3 �3 0 0 0 0 0 0 0 0 3 3 3 3

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð14Þ
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The matrix M maps the distribution function to its moments:
m ¼ M � f; f ¼ M�1 �m: ð15Þ

The labeling of the discrete velocity set fcig is uniquely defined by the rows 2, 3 and 4 in M corresponding to
jx; jy and jz, respectively. We note that moments e1; e2 and e3 and linear combinations of moments e; pxx and
pww in [27]. For the construction of M and detailed description of the moments, we refer readers to the work by
d’Humières et al. [27].

The diagonal matrix Ŝ of relaxation rates fsig is given by:
Ŝ ¼ diagðs1; sD; sD; sD; sm; sm; sm; sm; sm; sf; s11; . . . ; s19Þ: ð16Þ

Because ur ¼ ðm1;m2;m3Þ=qr ¼ ðurx; ury ; urzÞ and u ¼ mðeqÞ

1 ;mðeqÞ
2 ;mðeqÞ

3

	 

=qr ¼ ðux; uy ; uzÞ, therefore the species

velocity ur is relaxed to the mixture velocity u, given by the equilibria in the present model. As we shall discuss
in the next section, ður � uÞ is related to the diffusion force, thus the relaxation of ður � uÞmodels the diffusion
process in the system.

3.2. Hydrodynamic equations

We use the asymptotic analysis with the diffusive scaling dx=L ¼ Oð�Þ and dt=T ¼ Oð�2Þ to derive the
Navier–Stokes equations from the lattice Boltzmann model, where L and T are typical macroscopic length
and time scales. This implies that the macroscopic velocity U ¼ L=T ¼ �c, where c :¼ dx=dt. The diffusive scal-
ing is appropriate for the incompressible Navier–Stokes equations considered here.

The hydrodynamic equations for r-species derived from the LBE model are:
@tqr þ $ � ðqrurÞ ¼ 0; ð17aÞ
@tðqrurÞ þ u � $ðqruÞ ¼ �$pr þ $ � Sr � sDqrwr; ð17bÞ
where wr :¼ ður � uÞ ¼ q1ður � u1Þ=q, the pressure pr is given by Eq. (13), and the stress tensor for the r spe-
cies is:
Sr ¼ m $ðqrurÞ þ $ðqrurÞT �
2

3
$ � ðqrurÞI

� �
þ fr$ � ðqrurÞI; ð18Þ
where T and I are transpose and identity operators, respectively. The shear viscosity m and the bulk viscosity fr

are given by:
m ¼ 1

3

1

sm
� 1

2

� �
cdx; ð19aÞ

fr ¼
ð5� 3urÞ

9

1

sf
� 1

2

� �
cdx: ð19bÞ
In this work, the relaxation rate, sm, corresponding to the shear viscosity m for each species is equal, therefore
the shear viscosity is equal in both species. The bulk viscosity fr depends on both the relaxation rate sf and ur,
and it is not equal in different species in general. In the present work, we adjust sf so that fr are equal for all
species with different ur.

The hydrodynamic equations for the mixture barycentric velocity u are:
@tqþ $ � ðquÞ ¼ 0; ð20aÞ
@ tquþ u � $ðquÞ ¼ �$p þ $ � S; ð20bÞ
where the mixture stress is
S ¼
X

r

Sr ¼ m $ðquÞ þ $ðquÞT � 2

3
$ � ðquÞI

� �
þ
X

r

fr$ � ðqrurÞI: ð21Þ
In the low Mach number region, we can assume that $ � u � 0 and the total density gradients $q are negligible,
then
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S ¼
X

r

Sr � mq ð$uÞ þ ð$uÞT
h i

: ð22Þ
The total pressure of the mixture is
p ¼
X

r

pr ¼
1

3
q
X

r

xrur; ð23Þ
where xr :¼ qr=q, and the speeds of sound for individual species and mixture are:
c2
sr ¼

1

3
urc2; c2

s ¼
1

3
uc2; u :¼

X
r

xrur; ð24Þ
where c :¼ dx=dt.

3.3. Active and passive scalar dynamics

The difference of the species momentum (17b) leads to the following equation:
qrður � uÞ ¼ � 1

sD
$pr ¼ �

ur c2

3 sD
$qr ¼ �Dr $qr; ð25Þ
where the species self diffusivity Dr is given by:
Dr ¼
urc2

3 sD
: ð26Þ
Even when the relaxation frequency sD is fixed to be equal for all species, Dr can be adjusted by the parameter
ur. By taking the difference of Eq. (25) for two difference species, we have
sDður � u1Þ ¼ �
qp

qrq1

dr; ð27Þ
where the diffusion force dr is:
dr ¼ $
nr

n

	 

þ nrn1

nq
ðm1 � mrÞ$ ln p: ð28Þ
Therefore, the species mass conservation (17a) can be rewritten as:
@tqr þ u � $qr ¼
1

sD
$ � pdr; ð29Þ
where we have assumed that $ � u ¼ 0, which is satisfied up to Oð�2Þ. If we further assume that q, n and p for
the mixture are approximately constants so that their gradients are negligible, then in the leading order,
dr � $nr, and the above (29) is reduced to the advection–diffusion equation for qr:
@tqr þ u � $qr ¼ �
p

nmrsD
r2qr: ð30Þ
The mutual diffusivity Dr1 is defined by the following relation:
ður � u1Þ ¼ �
n2

nrn1
Dr1dr1: ð31Þ
Consequently, the mutual diffusion coefficient is given by:
Dr1 ¼
pq

sDn2mrm1
¼ mrm1

ðxrm1 þ x1mrÞ2
X

r

xrDr; ð32Þ
where Dr is the self-diffusion coefficient given by Eq. (26). Therefore, the relaxation rate sD can be used to ad-
just the mutual diffusion coefficient Dr1.
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The Navier–Stokes (20b) can be re-written as:
@tuþ u � $u ¼ �uc2

3q
$qþ mr2uþ Fu þ Fm; ð33aÞ

Fu :¼ � c2

3
$u; Fm :¼ $u � $m: ð33bÞ
The forces Fu and Fm are unique to the mixture dynamics, the former is due to the spatial inhomogeneity of the
mixture speed of sound csðuÞ and the latter to the spatial variation of the kinematic viscosity m ¼ mðuÞ, neither
of these forces exists in the single species dynamics. The force Fu is the baroclinic coupling force which is gen-
erated by the misalignments between the pressure and density gradients. The force Fm is the viscous coupling
force. We focus our attention on the effect of Fu in the present study and will neglect the effect of Fm, because
the viscosity m given by Eq. (19a) is assumed to be a constant in the present model by neglecting the effect of
local concentration gradients on the mixture viscosity.

One quantity of interest in the mixture dynamics is the order parameter of the mass concentration
difference:
/ :¼
qr � q1

qr þ q1

¼
qr � q1

q
¼ xr � x1; ð34Þ
which satisfies the following equation:
@t/þ u � $/ ¼ 1

q
$ � qD$/þ 1

q
$ � ðw� /Þ$p; ð35Þ
where w is the order parameter of the particle number concentration difference:
w :¼ nr � n1

nr þ n1
¼ nr � n1

n
¼ yr � y1: ð36Þ
For a binary mixture with two equal-mass species, i.e. mr ¼ m1, and constant total density q, then Eq. (35)
reduces to a diffusion equation:
@t/þ u � $/ ¼ Dr2/: ð37Þ

Even for this simple case, the mass concentration difference / in the LBE model is not a passive scalar. In fact
the dynamics of / influences that of u :¼

P
rxrur, which results in baroclinic coupling force Fu :¼ �c2$u=3.

The baroclinic coupling force Fu in turn drives the mixture hydrodynamics, as indicated in Eq. (33a), while /
is also driven by the hydrodynamics. Consequently, the scalar dynamics of / is closely coupled with the mix-
ture hydrodynamics, as opposed to the passive-scalar case, in which / is passively driven by the hydrodynam-
ics, and has no effect on the hydrodynamics [4,6].

Therefore, the order parameter / is generally an active scalar, which would become a passive scalar only
when mr ¼ m1 and ur ¼ u1, provided that all other parameters, such as the relaxation rates si, are identical for
both species. Under such conditions, two species are identical, only if the indifferentiability principle is satis-
fied. The above analysis also indicates how the viscous coupling force Fm can be introduced in the mixture by
the dependence of the mixture viscosity m on the local species concentrations xr.

While / is an active scalar in reality, the proposed LBE model can simulate the dynamics of a passive scalar
by treating / as a constant /0 in Eq. (33a). In doing so, the barycentric velocity u affects the species dynamics,
but not vice versa. The implementation of passive scalar simulations will be further discussed in Section 4.1.

4. Numerics in simulations

Several programming practices should be adopted in LBE codes to enhance computational speed and save
memory. First, one must not use 2D arrays for the transform matrix M in coding, because calculations involv-
ing arrays of different dimensions are very inefficient. Therefore, when computing moments from the distribu-
tions and vice versa, one should explicitly carry out the calculations. Second, one should eliminate common
sub-expressions by grouping them in brackets. This would take advantage of compiler to reduce the number
of floating point operations (FLOP). Thirdly, one should code the entire collision step together, and not code
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calculations of moments separately as a subroutine. In addition, if possible, one should combine collision and
advection together to reduce memory access time. With these sound common-sense practices, an MRT-LBE
code is about 15% slower than the LBGK code with equal number of discrete velocities. However, the MRT-
LBE model is far more efficient because of its numerical stability and flexibility.

For 3D calculations, parallel computing is necessary. Our code is written in C++ with a version of open
source Message Passing Interface library (MPICH 1.3). For the discrete fast Fourier transform, we use open
source library FFTW. The 3D simulations presented in this work were carried out on cluster computers avail-
able to us at the Department of Computer Science, Old Dominion University (ODU) and Politecnico di
Torino.

4.1. Initial conditions

To carry out the simulation of decaying homogeneous isotropic turbulence in a binary mixture, correct ini-
tial conditions are crucial. It is important to stress that even though we are interested in the incompressible
flows in the present study, the mixture does introduce compressibility. This makes the initialization for mixture
fluids of mixtures more complicated than single-species fluids. We will first discuss the initialization procedure
consistent with the active scalar methodology. We will also discuss the initialization procedure for passive sca-
lar methodology adopted for the LBE method.

In simulations of decaying homogeneous isotropic turbulence, an initial energy spectrum in the Fourier
space k is given, eE0ðkÞ :¼ eEðk; t ¼ 0Þ for k ¼ kkk. For mixtures, it is the individual species momentum jr,
rather than the individual species velocity ur, which has to satisfy the divergence free condition, i.e.
$ � jr ¼ 0. We therefore use the following initialization procedure for mixture flows:

(1) A random momentum for r-species, jr :¼ qrur, is generated in the physical space x first and then is made
divergence free in the Fourier space k so that k �~jr ¼ 0.

(2) Set qr ¼ 1 initially, therefore ~jr �~jr=2 ¼ eE0ðkÞ. Adjust the magnitude of ~jrðkÞ according to eE0ðkÞ. Now
jrðxÞ is divergence free and satisfies the specified initial energy spectrum eE0ðkÞ.

(3) With jrðxÞ given, we generate consistent density field qr and velocity field ur through an iterative proce-
dure. We initialize the density field q½0�r ¼ 1, then u½0�r ¼ jr, which are used as initial conditions for a single-
species lattice Boltzmann equation. After one collision-advection cycle, the single-species LBE generates
a new q½1�r and u½1�r ¼ jr=q

½1�
r . With jr fixed, this process is iterated until steady solutions of qr ¼ limn!1q½n�r

and ur ¼ jr=qr are obtained by setting a criterion kq½nþ1�
r � q½n�r k 6 � (or ku½nþ1�

r � u½n�r k 6 �), with some
small � > 0.

(4) The iterative procedure is repeated for each species.

With the momentum, density and velocity fields generated consistently with each other for a specified initial
energy spectrum eE0ðkÞ for each species, the mixture momentum j :¼

P
rjr is of course divergence free and sat-

isfies the initial energy spectrum eE0ðkÞ.
Since most existing studies of turbulent mixing is concerned with passive scalars [4], we must compare our

method with the passive-scalar approach. The initialization for passive scalar mixing is rather different from
that for active scalar mixing. For completeness, we shall describe succinctly the initialization procedure [4] as
follows.

(1) For r-species, the initial density qrðx; 0Þ is first generated in the Fourier space k:
~qrðk; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
fqðkÞ
4pk2

s
ei2phðkÞ;
where hðkÞ is uniformly distributed random number between 0 and 1, and fqðkÞ is a ‘‘top-hat” function:
fqðkÞ ¼
1; j k � ks j6 k0=2;

0; j k � ks j> k0=2:

�
ð38Þ
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The ratio k0=ks basically determines the integral length scale of the scalar field of qr; larger values of
k0=ks lead to larger length scales for the density field qr [4].
(2) The density qrðx; 0Þ in physical space x is obtained by inverse-Fourier transform of ~qrðk; 0Þ. In physical
space qrðx; 0Þ at each node is reset to qmin

r , if it is positive, and to qmax
r , if it is negative.

(3) The ‘‘double-delta” density distribution function created in the previous step has abruptive variations
from one node to next in physical space, which are not resolved properly and therefore need to be
smoothed. Thus the ‘‘double-delta” density distribution function is transferred to k-space and its Fourier
amplitudes are multiplied by the following filter function:
F qðkÞ ¼
1; k 6 kc;

ðk=kcÞ�2
; k > kc;

�
ð39Þ

where kc is a specified cut-off wavenumber. The filtered density distribution is then transferred back to
physical space x. The final result of the initial density distribution qrðx; 0Þ is a smoothed ‘‘double-delta”

distribution with two peaks at qr ¼ qmax
r and qr ¼ qmin

r .

(4) This initialization procedure is repeated for each species.

It should be noted that the smooth ‘‘double-delta” initial density fields generated by using the above ini-
tialization procedure are completely decoupled with the initial velocity fields urðx; t ¼ 0Þ. Consequently the
initial density fields so generated as passive scalars are not solutions of the Navier–Stokes equations.

4.2. Decaying homogeneous isotropic turbulence

Decaying homogeneous isotropic turbulence (DHIT) in a three-dimensional cube with periodic boundary
conditions is a canonical test case to study turbulence with direct numerical simulation (DNS). A random and
divergence free initial velocity field u is generated with a specified energy spectrum. Without external forcing,
the flow decays to the quiescent state ultimately. The interested quantities in DHIT are moments of the energy
spectrum eEðk; tÞ with respect to the wave-vector k, among which, the kinetic energy K and the dissipation rate
e are the lowest order moments of interest.

The energy spectrum eEðk; tÞ in DHIT evolves as
@t
eEðk; tÞ ¼ �eT ðk; tÞ � 2mk2 eEðk; tÞ; ð40Þ
where k is the wave vector (k ¼j k j is the wave number) and eT ðk; tÞ represents the nonlinear energy transfer
between modes [6]. The kinetic energy K and the dissipation rate e are given by
KðtÞ ¼
Z eEðk; tÞdk; eðtÞ ¼ 2m

Z
k2eEðk; tÞdk: ð41Þ
It has been long observed that, after a short initial transient period of time, the kinetic energy and the dissi-
pation rate exhibit a power-law decay:
KðtÞ=K0 � ðt=t0Þ�n
; eðtÞ=e0 � ðt=t0Þ�ðnþ1Þ

; ð42Þ

where K0 and e0 are the values of KðtÞ and eðtÞ at the reference time t ¼ t0 ¼ K0=e0, respectively. In turbulence,
the relevant length scales are the Kolmogorov length scale
g ¼ m3

e

� �1=4

; ð43Þ
which is the characteristic length of the smallest eddies, and the transverse Taylor microscale length
k ¼
ffiffiffiffiffiffiffiffiffiffiffi
20mK

e

r
; ð44Þ
which defines the Taylor microscale Reynolds number:
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Rek ¼
urmsk

m
¼ K

ffiffiffiffiffiffiffi
20

3me

r
; ð45Þ
where urms ¼
ffiffiffiffiffiffiffiffiffiffiffi
2K=3

p
is the root mean square (rms) of the velocity field u.

In all of our simulations, we use the following initial energy spectrum for both species
eE0ðkÞ ¼
Ak4e�bk2

; k 2 ½kmin; kmax�;
0; k 62 ½kmin; kmax�;

(
ð46Þ
where A and b are positive constants. The above initial energy spectrum is used to generate the random and
divergence-free momentum fields for both species, which in turn are used to generate density and velocity
fields for both species according to the procedure described in Section 4.1. The barycentric velocity
u ¼

P
rxrur naturally satisfied the above energy spectrum initially.

5. Results and discussion

We will report our numerical results for decaying homogeneous isotropic turbulence simulations using the
LBE model for binary mixture. The simulations were conducted on a cube of system size N 3, with various val-
ues of N. There are many adjustable parameters pertinent to fluid properties in the LBE model, as described in
Section 3. We fix the following parameters in the simulations. First, the relaxation rates fsig for both species A
and B, are the same. Specifically, sm ¼ 200=101 so that the viscosity for both species, A and B, is m ¼ 1=600 (in
units of dx ¼ dt ¼ 1), the relaxation rate for the bulk-viscosity sf ¼ 6=5, consequently f ¼ 5=27, the diffusion
relaxation rate sD ¼ 6=5, and all other relaxation rates are set to 1. In addition, the molecular weight mA ¼ 1
and the parameter uA ¼ 1 for the species A. We vary the B-species molecular weight mB and the parameter uB.
Also the averaged particle number density ratio of the two species is fixed at 1, such that the averaged mass
density ratio is equal to the ratio of the molecular weights, mA=mB. By varying uB ¼ mA=mB, we can adjust the
speed of sound and the self diffusion coefficient DB for species B, and the mutual diffusion DAB.

5.1. Scalar dynamics

The first set of our simulations is to test the diffusion dynamics in the system. Because the lattice Boltzmann
equation is restricted to the near incompressible flows with a practical Mach number limit of Ma < 0:3, we
should expect that the magnitude of the velocity difference kur � u1k is a quantity smaller than the species
velocity magnitude kurk, consistent with the incompressibility. Therefore we expect our results to confirm
the previous results obtained by using the incompressible Navier–Stokes equation and a passive scalar for dif-
fusion, although our approach is an active scalar one. Because kur � u1k is small, we therefore expect the
dynamics of / to be dominated by the diffusion except in the initial stage.

To measure the self-diffusion coefficients Dr in the LBE model, we first carried out a 1D simulation. The
system size is N x � Ny � N z ¼ 100� 10� 10 and periodic boundary conditions are applied to all three direc-
tions. The initial density distribution is sinusoidal along the x direction:
qAðx; 0Þ ¼ �qA½1þ dA sinðkxxÞ�; ð47aÞ
qBðx; 0Þ ¼ �qB½1� dB sinðkxxÞ�; ð47bÞ
where �qA ¼ 0:64; �qB ¼ 1:15; dA ¼ dB ¼ 0:001, and k ¼ 2p=N x. With a constant u ¼ ðux; 0; 0Þ, the density qA

and qB have the following solution:
qAðx; tÞ ¼ �qA½1þ dA sinðkxðx� uxtÞÞ�e�DAk2
x t; ð48aÞ

qBðx; tÞ ¼ �qB½1� dB sinðkxðx� uxtÞÞ�e�DBk2
x t; ð48bÞ
Therefore, the evolution of the density variation can provide measurements of the self-diffusion coefficient Dr

and the non-Galilean invariance effect. Fig. 1 shows the measured self-diffusion coefficient Dr as a function of
sD and ur ¼ mA=mB ¼ 1 and 1/2. The measured values of Dr agree with the analytic result of Eq. (26) at least
three significant digits.
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Fig. 1. Dependence of the self-diffusion coefficient Dr on the relaxation rate sD and ur. The symbols are the values measured from the
numerical simulations and the dashed lines are the results given by Eq. (26).
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We next present the results of the scalar dynamics in the decaying homogeneous isotropic turbulence
(DHIT) in 3D. The system size is N 3 ¼ 1773. We first use the passive scalar approach in order to reproduce
the existing results [4]. We choose mA ¼ mB – the case closest to passive scalar approach. The initial diver-
gence-free velocity fields for DHIT are generated with the energy spectrum of Eq. (46) and the following
parameters: urms ¼ 0:0391; A ¼ 2:53� 10�5; b ¼ 0:14; ½kmin; k max� ¼ ½1; 14�, and consequently Rek ¼ 12:4.
As for the density fields, we use the passive-scalar initialization procedure, described in Section 4.1, to initialize
the density fields with the following parameters: ks ¼ 1; k0 ¼ 1, and kc ¼ 2; and qmin

r ¼ 0:4 and qmax
r ¼ 0:6.

Fig. 2 shows the result of the probability distribution function (PDF) of the concentration difference
/ ¼ ðxA � xBÞ. The PDF Pð/Þ begins with the initial distribution is close to a ‘‘double-delta” as shown in
Fig. 2 and since there is not external forcing term (those previously discussed due to non-homogeneous local
concentrations are actually driven by the definition of total mixture pressure and mixture viscosity), then
evolves to a ‘‘single-delta” function, i.e. to the homogeneous equilibrium condition. This case is obviously dif-
ferent from that considered in other calculations [4], where the final steady-state distribution is sustained by
(and highly depending on) the adopted forcing term.
0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Fig. 2. The dynamics of the PDF P ð/; tÞ with the passive scalar initialization for the density fields. mA ¼ mB ¼ 1.
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We also simulate active scalar dynamics in DHIT. The initial momentum fields for DHIT are generated as
the velocity fields in the previous case of passive scalar dynamics. Then the density and velocity fields for each
species are consistently generated with the active-scalar initialization procedure described in Section 4.1. The
molecular mass ratios used in the simulations are mB=mA ¼ 1 and mB=mA ¼ 8. The results are shown in Fig. 3.
In both cases of mB=mA ¼ 1 and 8, the initial PDF P ð/; 0Þ is close to a Gaussian distribution centered at the
asymptotic value of /;/1 ¼ ðmA � mBÞ=ðmA þ mBÞ, with a very broad width, indicating large variance of /
initially. The width of Pð/; tÞ shrinks monotonically as it evolves in time. Our results show that, independent
of initial state, the PDF P ð/; tÞ evolves to a ‘‘single-delta” function eventually, as expected.

5.2. Decaying homogeneous isotropic turbulence

Before we present the results for the decaying homogeneous isotropic turbulence, we must identify the
appropriate energy for the system. For a binary mixture, there are two energies: the total kinetic energy E

based on the barycentric sum of the kinetic energies of each species and the kinetic energy of the barycentric
velocity, and the former is not less than the latter in general:
Fig. 3.
mB=mA
E ¼ 1

2

X
r

xru2
r P

1

2
u2 ¼ K: ð49Þ
To identify the difference between E and K, we perform a simulation with the system size of N 3 ¼ 453, and the
following parameters for the initial velocity fields: urms ¼ 0:0319;A ¼ 3:5926 � 10�5; b ¼ 0:14; ½kmin; kmax� ¼
½2; 4�;Rek ¼ 13:38. In this case, the particle mass ratio is mB=mA ¼ 9. In Fig. 4 we show the total and the bary-
centric kinetic energies, normalized by the initial value K0 of the barycentric kinetic energy, and the
corresponding dissipation rates. Clearly, the mixture kinetic energy EðtÞ quickly relaxes to the total kinetic
energy KðtÞ, because the rotational energy, which accounts the difference between EðtÞ and KðtÞ, dissipates
quickly in the system. We also observed that the dissipation rate corresponding to EðtÞ relaxes slower than
EðtÞ to the dissipation rate corresponding to KðtÞ, because the rotational effect has been magnified by k2

for the dissipation rate. Nevertheless, this effect due to the rotational energy does not affect the decay exponent
n of the dissipation rate, as clearly shown in Fig. 4. Therefore, we will use the barycentric velocity u to compute
kinetic energy in what follows.

We performed a number of realizations for the DHIT simulations, compiled together in Table 1. In all the
realizations, the molecular weight ratio is fixed at mB=mA ¼ 9, the mutual diffusion coefficient is Dr1 ¼ 0:056,
and the viscosity is m ¼ 1=600. Each realization starts with different random initial conditions. The amplitude
A, the width b and the spectral range ½kmin; kmin� of the initial energy spectrum, the rms value of the initial
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PDF Dynamics of the mass concentration difference / ¼ ðqA � qBÞ=q. The PDFs have been normalized by a factor of 106. (a)
¼ 1 and (b) mB=mA ¼ 8.
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Fig. 4. Decay of the total kinetic energy EðtÞ and the kinetic energy of the barycentric velocity KðtÞ, and the corresponding dissipation
rates eEðtÞ and eKðtÞ.

Table 1
The decay exponent in DHIT obtained in a number of realizations

No. Parameters nK ne n

1 N3 ¼ 633; ½kmin; kmax� ¼ ½1; 4� 1.818 1.725 1.772
2	 A ¼ 3:4293� 10�5; b ¼ 0:14 1.787 1.874 1.831
3 urms ¼ 0:0327; Rek ¼ 14:16 1.877 1.794 1.836
4	 K0 ¼ 1:6020� 10�3; e0 ¼ 5:1209� 10�5 1.909 1.910 1.910
5 1.906 1.763 1.835
6	 1.576 1.595 1.585

7 N3 ¼ 633; ½kmin; kmax� ¼ ½2; 4� 1.581 1.792 1.686
8	 A ¼ 3:4407� 10�3; b ¼ 0:56 1.793 1.935 1.864
9 urms ¼ 0:0558; Rek ¼ 29:11 1.738 1.635 1.686
10	 K0 ¼ 4:6729� 10�3; e0 ¼ 1:0308� 10�4 1.780 1.849 1.815

11 N3 ¼ 1233; ½kmin; kmax� ¼ ½1; 8� 1.566 1.428 1.497
12	 A ¼ 1:1727� 10�4; b ¼ 0:14 1.625 1.572 1.599
13 urms ¼ 0:0840; Rek ¼ 26:76 1.291 1.369 1.330
14	 K0 ¼ 1:0575� 10�2; e0 ¼ 6:2480� 10�4 1.485 1.391 1.438
15 1.389 1.441 1.415
16	 1.548 1.372 1.460

The exponent n is the mean value between those measured from K and e, namely nK and ne respectively. The runs marked with * are
initialized with passive-scalar initial conditions.
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velocity field urms, and the initial Taylor-microscale Reynolds number Rek for each realization are also given in
Table 1. The realizations marked with ‘‘*” are performed with the passive scalar approach by assuming / to its
constant averaged value in the momentum equation, as discussed in Section 3. For each realization, we mea-
sure the exponent n from both the kinetic energy KðtÞ and the dissipation rate eðtÞ, and compute the averaged
value of these two measurements for n. The values of n are measured when both KðtÞ and eðtÞ reach the stage
of (nearly) power-law decay. The averaged values of n are given in Table 1.

Clearly, the values n are larger for smaller values of Rek. This observation is consistent with existing exper-
imental and numerical results. We compile in Table 2 the exponent n in comparison with existing data.

Fig. 5a shows a typical dynamics of the kinetic energy KðtÞ and the dissipation rate eðtÞ. The realization was
carried out with a system size of N 3 ¼ 1353 and 32,700 time steps. The parameters for the initial energy spec-
trum are A ¼ 2:7985� 10�6; b ¼ 0:14; ½kmin; kmax� ¼ ½4; 8�, and urms ¼ 0:0090, resulting in K0 ¼ 1:2162� 10�4



Table 2
Existing data for the exponent n

Rek Exponent n Refs.

0–30 1.1–1.52 NS–DNS [57]
10–50 1.25–1.51 NS–DNS [58]
4.4–5.4 1.3–1.8 Exp. [59]
28.37–43.85 1.285–1.309 Exp. [60]
2.3–22.5 1.38–1.85 LBGK–DNS [30]
14.16–29.11 1.330–1.910 LBE–DNS

The present results in Table 1 are given as LBE–DNS.
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Fig. 5. The dynamics of: (a) the kinetic energy KðtÞ and the dissipation rate eðtÞ and (b) the Taylor micro-scale Reynolds number RekðtÞ
and the decay exponent nðtÞ. N 3 ¼ 1353, mB=mA ¼ 9, K0 ¼ 1:2162� 10�4; e0 ¼ 1:0731� 10�5; t0 � 18:89 and Rekð0Þ ¼ 2:35.
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and e0 ¼ 1:0731� 10�5;Rek ¼ 2:35. The time t is normalized by t0 ¼ nK0=e0 � 18:89, assuming n ¼ 5=3.
Fig. 5a clearly shows that both KðtÞ and eðtÞ decay according to power-laws with the decaying exponents
1.60 and 2.66, respectively, in the late dynamics, i.e. after t=t0 > 100.

To demonstrate the dynamics of the decaying exponent n, in Fig. 5b we show the dynamics of n computed
from both KðtÞ and eðtÞ, their average, and corresponding RekðtÞ measured from KðtÞ and eðtÞ. Clearly, the
values of n measured from KðtÞ and eðtÞ converge to their averaged value as RekðtÞ decreases. When nK and
ne converge to their average value n after t=t0 � 500, RekðtÞ also shows power-law decay, which should be
ðt=t0Þð1�nÞ=2. The dimensionless Kolmogorov scale g for this particular realization is always larger than 0:5dx

at the time when the exponent n is measured, ensuring that the flow is well resolved [6].

6. Conclusions

In this paper we have proposed a consistent lattice Boltzmann equation with baroclinic coupling between
species dynamics and mixture dynamics in multi-species mixtures. The proposed lattice Boltzmann equation
models the active scalar dynamics in mixtures and has the following distinctive features. First, it is directly
derived from the linearized Boltzmann equations for mixtures. Second, it uses the multiple-relaxation-time
collision model so that it has the flexibility of independent Reynolds and Schmidt numbers. In addition, it
has better numerical stability. Thirdly, it satisfies the indifferentiability principle and therefore leads to consis-
tent hydrodynamic equations for the mixture barycentric velocity.

The proposed LBE model is validated through the simulations of decaying homogeneous isotropic turbu-
lence in three dimensions. We first simulate both active and passive scalar dynamics in decaying turbulence for
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mixtures. We also compute various statistical quantities and their decay exponents in decay turbulence. Our
results agree well existing results for both scalar dynamics and decaying turbulence. Our results indicate that,
in low Mach number flows, the diffusion velocity is rather small and does not have any substantial effects. This
is consistent with physics for equilibrium flows at small Mach number and nearly zero Knudsen number. This
situation will change when the Mach and Knudsen numbers increase and this will be the subject of our future
investigation. Our future investigation will include forced turbulence and compressible turbulence modeled by
kinetic schemes for mixture dynamics.
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